Nomenclature

A_{i}	effective cross-sectional area of rotary valve port
A_p	effective cross-area of piston
B_d	damping coefficient of motor
B_o	effective damping coefficient of the rack and pinion
B_{sw}	damping coefficient of the input shaft
C_{q}	flow coefficient
C_{21}	front wheel tire stiffness
C_{23}	rear wheel tire stiffness
C_{a1}	angular stiffness of the stabilizer bar of the front suspension
C_{a2}	angular stiffness of the stabilizer bar of the rear suspension
D_{21}	damping coefficients of the front suspension
D_{23}	damping coefficients of the rear suspension
E_1	front roll-steer coefficients
E_2	rear roll-steer coefficients
d	pneumatic trail
F_{h}	force applied by hydraulic cylinder
F_r	force applied by rack
F_{ss}	force applied by steering shaft
I_x	Inertia product of vehicle mass on x axes
I_{xz}	Inertia product of vehicle mass on x and z axes
I_z	Inertia product of vehicle mass on z axes
$J_{_m}$	moment of inertia of motor
J_{sw}	moment of inertia of the input shaft
k_1	stiffness coefficient of front wheel
k_{p}	load torque coefficient of hydraulic pump
K_{s}	stiffness coefficient
k_1	stiffness coefficient of front wheel
k_2	stiffness coefficient of rear wheel
m	vehicle mass
m_s	sprung mass
m_o	effective mass of the rack and pinion
n	speed of motor
n_1	transmission ratio from the steering screw to front wheel
p_{b}	stator thickness of hydraulic pump
P_{E-loss}	energy loss of ECU
P_{m-loss}	energy loss of motor
P_{MPK}	mechanical system output power
P_{p-loss}	energy loss of hydraulic pump
P_s	output pressure of hydraulic pump
P_{v-loss}	energy loss of rotary valve
Q_s	total flow of hydraulic pump

- q displacement of hydraulic pump
- r_n radius of the rack and pinion
- R_1 short axis radius of hydraulic pump
- R_2 long axis radius of hydraulic pump
- R_a armature resistance of motor
- R_{elec} external resistance of motor
- t vane thickness of hydraulic pump
- T_m driving torque of motor
- T_{sw} torque of the input shaft
- T_r aligning torque
- *u* velocity of vehicle
- U_s supply voltage of motor
- w gap width of rotary valve
- x_o displacement of the rack and pinion
- Z vane number of hydraulic pump
- θ_p rotation angle of front wheel
- θ_{sw} rotation angle of the input shaft
- β sideslip angle
- δ rotation angle of front wheel
- ω_r yaw rate
- ϕ body roll angle